关闭→
当前位置:首页 > 职场 > 评估点估计的一致性

评估点估计的一致性

时间:2023-01-22 22:40:38
评估点估计的一致性

评估点估计的一致性

评估点估计的一致性。评估通常的意思是根据特定的目的和所掌握的资料,对某一事物的价值或状态进行定性定量的分析说明和评价的过程。那么评估点估计的一致性是什么意思?

  评估点估计的一致性1

什么叫估计量的一致性

指当样本容量趋于无穷大时,样本的数字特征依概率收敛于相应总体的数字特征。即用容量较大的样本比容量较小的样本作出的估计值要更精确,随着样本容量的增大估计值与待估参数接近的可能性就越大,估计值的这种特性称为估计的一致性。

一致估计亦称相合估计和相容估计,是一种优良点估计。按收敛的意义不同将一致估计分为两种:弱一致估计和强一致估计。

点估计又称定值估计,是指直接用样本平均数或样本成数代替总体平均数或成数,而不考虑误差的一种估计方法。例如对100名大学生进行收视率调查,调查结果是30%每天收看电视新闻,从而推断, 在全体大学生中30%每天收看电视新闻。

点估计的含义

说起来,“点估计”应该更接近“估计”真实含义。我们希望求得未知参数的值,而点估计的结果也是一个具体的值,在这点上估计值和未知参数的含义是相同的。只不过点估计没有提供估计的误差而已。这个问题由区间估计来解答。“点估计”中的“点”体现了跟“区间”估计的差别。

一致性的分类:

1、强一致性

强一致性可以理解为在任意时刻,所有节点中的数据是一样的。同一时间点,在节点A中获取 ……此处隐藏565个字……无偏估计不一定是好估计。

有偏估计可以修正为无偏估计。

二、有效性

有效性就是看估计量的方差值,方差代表波动,波动越小越有效。

三、一致性(相合性)

一致性就是在大样本条件下,估计值接近真实值。

  评估点估计的一致性3

相合估计(或一致估计)是简述评价估计量好坏的标准。

相合估计(或一致估计)是在大样本下评价估计量的标准,在样本量不是很多时,人们更加倾向于基于小样本的评价标准,此时,对无偏估计使用方差,对有偏估计使用均方误差。

一般地,在样本量一定时,评价一个点估计的好坏标准使用的指标总是点估计与参数真值 θ 的距离的函数,最常用的函数是距离的平方,由于估计量具有随机性,可以对该函数求期望。

均方误差是反映估计量与被估计量之间差异程度的一种度量。设t是根据子样确定的总体参数θ的一个估计量,(θ-t)2的数学期望,称为估计量t的均方误差。它等于σ2+b2,其中σ2与b分别是t的方差与偏倚。

当样本容量n充分大时,估计量可以以任意的精确程度逼近被估计参数的真值。按收敛意义不同,可以区分不同的相合性,常见的有:弱相合估计、强相合估计、r阶相合估计,这三种相合性之间的关系与三种收敛性的关系是完全一致的。相合性是一个估计量所应具备的最基本的性质。

一个估计量它依赖于样本n,为表明这种依赖性。随着样本量的变化,可得到一列估计量,一个自然的希望是,当样本容量无线增加时,估计量能够依某种意义接近于被估计量的真值。

显然,这是对估计量的起码要求。相合性就是这样的一个要求。

《评估点估计的一致性.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式